Análisis de sentimiento de la agenda de los partidos políticos españoles en Twitter durante la Moción de Censura de 2018. Un enfoque de datos composicionales



Palabras clave:

análisis de sentimiento, agenda-setter, agenda de atributos, datos composicionales (CoDa), Twitter, biplot


Este artículo presenta el análisis de sentimiento de la discusión de partidos políticos en Twitter, en el contexto de la Moción de Censura al gobierno español de 2018. En particular, extrajimos y analizamos 2824 tweets de las cuentas oficiales de las 13 formaciones políticas representadas en el Congreso de los Diputados. En su desarrollo metodológico aplicamos el análisis composicional de datos y su visualización a través del biplot (una herramienta de visualización que permite contrastar la importancia relativa de los elementos en estudio). A diferencia de los enfoques tradicionales, nuestro estudio enfatiza la importancia relativa de los temas dentro de la agenda, a la vez que incorpora un tercer componente, el análisis de sentimiento. La investigación concluye sobre la fiabilidad del método para representar composicionalmente la agenda y los agenda-setters, así como el análisis de sentimiento, constatando que los temas que se asocian de forma más notable con determinados partidos, también lo hacen con su proyección sobre los sentimientos. El análisis arroja luz sobre la representación de los sentimientos en los agenda-setters (agenda de atributos), especialmente en el campo de la comunicación política.


Generalitat de Catalunya (COSDA, 2017SGR656), Ministerio de Ciencia, Innovación y Universidades/FEDER (CODAMET, RTI2018-095518-B-C21), Ministerio de Sanidad, Consumo y Bienestar Social (CIBER, CB06/02/1002).


Ahmadian, S.; Azarshahi, S. & Paulhus, D.L. (2017). Explaining Donald Trump via communication style: Grandiosity, informality, and dynamism. Personality and Individual Differences, 107, 49–53.

Aitchison, J. (1986). The statistical analysis of compositional data. Monographs on statistics and applied probability. London: Chapman and Hall.

Aitchison, J. & Greenacre, M. (2002). Biplots of compositional data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51(4), 375–392.

Berelson, B. (1952). Content analysis in communication research. New York: Hafner.

Blasco-Duatis, M.; Coenders, G. & Saez, M. (2018a). Compositional visualization of intermedia agenda setting by the main media groups and political parties in the Spanish 2015 General Elections. Revista Latina de Comunicación Social, 1(73), 264–292.

Blasco-Duatis, M.; Coenders, G. y Sáez, M. (2018b). Representación composicional (CoDa) de la agenda-setting de los opinantes sobre política en la prensa escrita española durante las Elecciones Generales de 2015. Estudios sobre el Mensaje Periodístico, 24(2), 1121–1146.

Blasco-Duatis, M.; Sáez-Zafra, M. & Fernández-García, N. (2018c). Compositional representation (CoDa) of the agenda-setting of the opinion makers on politics in the main Spanish media groups in the 2015 General Elections. Communication & Society, 31(2), 1–23.

Blasco-Duatis, M.; Coenders, G.; Sáez, M.; Fernández.García, N. & Cunha, I. (2019). Mapping the agenda-setting theory, priming and the spiral of silence in twitter accounts of political parties. International Journal of Web Based Communities, 15(1), 4–24.

Broersma, M. & Graham, T. (2012). Social media as beat: Tweets as a news source during the 2010 British and Dutch elections. Journalism Practice, 6(3), 403–419.

Van den Boogaart, K.G. & Tolosana-Delgado, R. (2013). Analyzing Compositional Data with R. Berlin: Springer.

Calderon, N. A.; Fisher, B.; Hemsley, J.; Ceskavich, B.; Jansen, G.; Marciano, R. & Lemieux, V.L. (2015). Mixed-initiative social media analytics at the World Bank: Observations of citizen sentiment in Twitter data to explore “trust” of political actors and state institutions and its relationship to social protest. 2015 IEEE International Conference on Big Data (pp. 1678–1687).

Calvo, E. y Aruguete, N. (2020). Fake news, burbujas, trolls y otros encantos. Cómo funcionan (para bien y para mal) las redes sociales. Buenos Aires: Siglo veintiuno editores.

Conway, B.; Kenski, K. & Wang, D. (2015). The rise of Twitter in the political campaign: Searching for intermedia agenda‐setting effects in the presidential primary. Journal of Computer‐Mediated Communication, 20(4), 363–380.

Daunis-i-Estadella, J.; Thió-i-Fernández-de-Henestrosa, S. & Mateu-i-Figueras, G. (2011). Two more things about compositional biplots: quality of projection and inclusion of supplementary elements. In J.J. Egozcue; R. Tolosana-Delgado & M.I. Ortego (Eds.), Proceedings of the 4th International Workshop on Compositional Data Analysis (pp. 1-14).

Egozcue, J. J. & Pawlowsky-Glahn, V. (2016). What are compositional data and how should they be analyzed? Boletín de Estadística e Investigación Operativa, 32(1), 5-29.

Fan, W. & Gordon, M.D. (2014). The Power of Social Media Analytics. Communication of the ACM, 57(6), 74–81.

Ferrer-Rosell B. & Marine-Roig, E. (2020). Projected versus perceived destination image. Tourism Analysis, 25.

Ferrer-Rosell, B.; Martin-Fuentes, E. & Marine-Roig, E. (2019). Do hotels talk on Facebook about themselves or about their destinations? In J. Pesonen & J. Neidhardt (Eds.), Information and Communication Technologies in Tourism 2019 (pp. 344-356). Cham: Springer.

Ferrer-Rosell, B.; Coenders, G. & Martin-Fuentes, E. (2020a). Compositional data analysis in e-tourism research. What TripAdvisor reviews complain about hotels in Barcelona? In X. Zheng; M. Fuchs; U. Gretzel & W. Höpken (Eds.) Handbook of E-Tourism. Deutschland: Springer Nature.

Ferrer-Rosell, B.; Martin-Fuentes, E. & Marine-Roig, E. (2020b). Diverse and emotional: Facebook content strategy by Spanish hotels. Journal of Information Technology & Tourism, 22(4), 53–74.

Ferrer-Rosell, B.; Martin-Fuentes, E.; Vives-Mestres, M. & Coenders, G. (2020c). When size does not matter: compositional data analysis in marketing research. In R. Nunkoo, V. Teeroovengadum & C. Ringle (Eds.), Handbook of Research Methods for Marketing Management, in press.

Filzmoser, P.; Hron, K. & Templ, M. (2018). Applied Compositional data Analysis with Worked Examples in R. New York: Springer.

Graham, T.; Jackson, D. & Broersma, M. (2016). New platform, old habits? Candidates use of Twitter during the 2010 British and Dutch general election campaigns. New Media & Society, 18(5), 765–783.

Greenacre, M. (2018). Compositional data analysis in practice. New York: Chapman and Hall/CRC press.

Golbeck, J.; Grimes, J.M. & Rogers, A. (2010). Twitter use by the U.S. Congress. Journal of the American Society for Information Science and Technology, 61(8), 1612–1621.

Guo, L.; Rohde, J. A. & Wu, H. D. (2018). Who is responsible for Twitter’s echo chamber problem? Evidence from 2016 U.S. election networks. Information. Communication & Sociery, 21(12), 234–251.

Guo, L. & Vargo, C. (2015). The power of message networks: A big-data analysis of the network agenda setting model and issue ownership. Mass Communication and Society, 18(5), 557-576.

Jungherr, A. (2014). Twitter in politics: A comprehensive literature review. Social Science Research Network.

Jungheer, A. (2016). Twitter use in election campaigns: A systematic literature review. Journal of Information Technology & Politics, 13(1), 72–91.

Kayser, V. & Bierwisch, A. (2016). Using Twitter for Foresight: An Opportunity? Futures, 84(Part A), 50–63.

Krippendorff, K. (2004). Content qnalysis: An introduction to its methodology. Sage: Thousand Oaks.

Kušen, E.; Strembeck, M.; Cascavilla, G. & Conti, M. (2017). On the influence of emotional valence shifts on the spread of information in social networks. Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Net-works Analysis and Mining 2017 (pp. 321–324).

Kynčlová, P.; Filzmoser, P. & Hron, K. (2016). Compositional biplots including external non-compositional variables. Statistics, 50(5), 1132–1148.

Lee, J. & Xu, W. (2018). The more attacks, the more retweets: Trump’s and Clinton’s agenda setting on Twitter. Public Relations Review, 44(2), 201-213.

Marine-Roig, E. & Ferrer-Rosell, B. (2018). Measuring the gap between projected and perceived destination images of Catalonia using compositional analysis. Tourism Management, 68, 236–249.

Martin-Fernandez, J.A.; Hron, K.; Templ, M.; Filzmoser, P. & Palarea-Albaladejo, J. (2015). Bayesian-multiplicative treatment of count zeros in compositional data sets. Statistical Modelling, 15(2), 134–158.

McCombs, M. & Shaw, D. (1972). The agenda-setting function of mass media. Public Opinion Quarterly, 36(2), 176–187.

McCombs, M. (2004). Setting the agenda. Cambridge: Polity Press.

Meraz, S. (2009). Is there an elite hold? Traditional media to social media agenda setting influence in blog networks. Journal of Computer Mediated Communication, 14(3), 682–707.

Moreno-Ortiz, A. & Pérez Hernández, C. (2013). Lexicon-Based Sentiment Analysis of Twitter Messages in Spanish. Procesamiento del Lenguaje Natural, 50, 93–100.

Neuman, W.; Guggenheim, L.; Jang, S. & Bae, S.Y. (2014). The dynamics of public attention: Agenda‐setting theory meets Big Data. Journal of Communication, 64(2), 193-214.

Palarea-Albaladejo, J. & Martín-Fernández, J.A. (2015). zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemometrics and Intelligent Laboratory Systems, 143, 85–96.

Pang, B. & Lee, L. (2004). A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, (pp. 271–278). Barcelona: Association for Computational Linguistics.

Parmelee, J. (2013). Political journalists and Twitter: Influences on norms and practices. Journal of Media Practice, 14(4), 291-305.

Pawlowsky-Glahn, V.; Egozcue, J.J. & Tolosana-Delgado, R. (2015). Modeling and Analysis of Compositional Data. Chichester: Wiley.

Scolari, C. A.; Lugo, N. y Masanet, M. (2019). Educación transmedia: de los contenidos generados por los usuarios a los contenidos generados por los estudiantes. Revista latina de comunicación social, 1(74), 116–132.

Statistic Brain (2018). STATS. Twitter company statistics.

Thelwall, M.; Buckley, K. & Paltoglou, G. (2011). Sentiment in Twitter events. Journal of the American Society for Information Science and Technology, 62(2), 406–418.

Thió-Henestrosa, S. & Martín-Fernández, J.A. (2005). Dealing with compositional data: The freeware CoDaPack. Mathematical Geology, 37(7), 773–793.

Tumasjan, A.; Sprenger, T. O.; Sandner, P. G. & Welpe, I. M. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. International Conference on Weblogs and Social Media, 10, 178–185.

Turney, P.D. (2002). Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews. Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), 417–424.

Wallsten, K. (2014). Microblogging and the news: political elites and the ultimate retweet. In K. Wallsten (Ed.), Political campaigning in the information age (pp. 128–147).

Wimmer, R. & Dominick, J. (2006). Mass Media Research: an introduction. Wadsworth: Thomson.

Yousuf Al-Aama, A. (2015). The use of Twitter to promote e-participation: connecting government and people. International Journal of Web Based Communities, 11(1), 73-96.


Estadísticas en RUA



Cómo citar

Blasco-Duatis, M., & Coenders, G. (2020). Análisis de sentimiento de la agenda de los partidos políticos españoles en Twitter durante la Moción de Censura de 2018. Un enfoque de datos composicionales. Revista Mediterránea De Comunicación, 11(2), 185–198.



Dossier monográfico: Emociones y discursos en las controversias públicas