Valoración del odio en medios españoles: tipologías, intensidades y escenarios digitales

Autores/as

DOI:

https://doi.org/10.14198/MEDCOM.28666

Palabras clave:

Detección, expresiones de odio, medios digitales, medios informativos, monitorieo, redes sociales

Resumen

Propósito. Este estudio analiza la percepción de los actores de la comunicación, el sector social y la academia sobre la presencia y difusión del discurso de odio en los medios informativos digitales en España, con el fin de identificar discrepancias entre sus percepciones y la realidad mediática. Metodología. Se llevó a cabo una investigación exploratoria a través de una encuesta en línea aplicada a una muestra aleatoria de 199 profesionales de medios, representantes del tercer sector e investigadores académicos. Posteriormente, estos datos fueron contrastados con el análisis de 9.278.137 mensajes recolectados en Facebook, X y portales web institucionales de cinco medios digitales españoles. Resultados y conclusiones. Los hallazgos revelan divergencias entre las percepciones de los agentes encuestados y la realidad de la diseminación del odio en estos medios, especialmente en cuanto a los escenarios de mayor propagación. Se observa una priorización del odio xenófobo sobre otras tipologías y una subestimación del papel del odio político. Además, los encuestados tienden a centrarse en formas extremas de odio, sin considerar aquellas de menor intensidad que pueden contribuir a la normalización de discursos incívicos. Aportación original. Este estudio proporciona una metodología replicable para evaluar la percepción del discurso de odio en medios digitales y contrastarla con datos empíricos, contribuyendo al diseño de estrategias de monitoreo más efectivas y alineadas con la realidad de la comunicación digital.

Financiación

Ministerio de Ciencia e Innovación (Agencia Estatal de Investigación), Universidad Internacional de La Rioja

Citas

Bonaut, J., Vicent-Ibáñez, M., & Paz-Rebollo, M. A. (2024). Sports Journalists and Readers: Journalism and User Incivility. Journalism Practice, 18(2), 356–373. https://doi.org/10.1080/17512786.2023.2222730

Brown, A. (2017). What is hate speech? Part 1: The Myth of Hate. Law and Philosophy, 36(4), 419–468. https://doi.org/10.1007/s10982-017-9297-1

Chadwick, A. (2017). The Hybrid Media System: Politics and Power. Oxford University Press. https://doi.org/10.1093/oso/9780190696726.001.0001

Chen, G., & Dang, J. (2022). Crowds’ malice behind the screen: The normative influences of online dehumanization on discrimination against foreigners. Group Processes & Intergroup Relations, 26(7), 1548-1564. https://doi.org/10.1177/13684302221127228

Collins, J. (2023). Mobilising Extremism in Times of Change: Analysing the UK’s Far-Right Online Content During the Pandemic. European Journal on Criminal Policy and Research, 1–23. https://doi.org/10.1007/s10610-023-09547-9

Davies, E., & Dulguerova, E. (2024). Evaluating the performance and influencing factors of three portable black carbon monitors for field measurement. Journal of Environmental Sciences-China, 139, 320–333. https://doi.org/10.1016/j.jes.2023.05.044

De la Peña Sarracén, G. L., & Rosso, P. (2023). Systematic keyword and bias analyses in hate speech detection. Information Processing & Management, 60(5), 103433. https://doi.org/10.1016/j.ipm.2023.103433

Digital News Report (2020). Se debilita la confianza en los medios, resisten las marcas periodísticas y emerge el periodismo local. Digital News Report. https://bit.ly/3Ke7ax1

Dordevic, J. P. (2020). The sociocognitive dimension of hate speech in readers’ comments on Serbian news websites. Discourse Context & Media, 33. https://doi.org/10.1016/j.dcm.2019.100366

Fetscherin, M. (2019). The five types of brand hate: How they affect consumer behavior. Journal of Business Research, 101, 116–127. https://doi.org/10.1016/j.jbusres.2019.04.017

Frenda, S., Ghanem, B., Montes-y-Gómez, M., & Rosso, P. (2019). Online Hate Speech against Women: Automatic Identification of Misogyny and Sexism on Twitter. Journal of Intelligent & Fuzzy Systems, 36(5), 4743–4752. https://doi.org/10.3233/JIFS-179023

Frías-Vázquez, M., & Seoane-Pérez, F. (2019). Hate Speech in Spain Against Aquarius Refugees 2018 in Twitter. In Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 906–910). Asociation for Computing Machinery. https://doi.org/10.1145/3362789.3362849

Gangurde, A., Mankar, P., Chaudhari, D., & Pawar, A. (2022). A Systematic Bibliometric Analysis of Hate Speech Detection on Social Media Sites. Journal of Scientometric, 11(1), 100–111. https://doi.org/10.5530/jscires.11.1.10

García-Baena, D., García-Cumbreras, M. A., Jiménez-Zafra, S. M., García-Díaz, J. A., & Valencia-García, R. (2023). Hope speech detection in Spanish. Language Resources and Evaluation, 57(4), 1487–1514. https://doi.org/10.1007/s10579-023-09638-3

Gómez-García, S., Paz-Rebollo, M. A., y Cabeza-San-Deogracias, J. (2021). Newsgames against hate speech in the refugee crisis. Comunicar: Revista Científica de Comunicación y Educación, 29(67), 123–133. https://doi.org/10.3916/C67-2021-10

Harahap, Y. S., & Siregar, N. (2022). A forensic linguistic approach to interpreting a hate speech case on social media. Vision, 18(1), 58–65. https://doi.org/10.30829/vis.v18i1.1414

Hille, S., & Bakker, P. (2014). Engaging the Social News User. Journalism Practice, 8(5), 563–572. https://doi.org/10.1080/17512786.2014.899758

Jiménez-Amores, J., Blanco-Herrero, D., Sánchez-Holgado, P., y Frías-Vázquez, M. (2021). Detectando el odio ideológico en Twitter. Desarrollo y evaluación de un detector de discurso de odio por ideología política en tuits en español. Cuadernos.Info, (49), 98–124. https://doi.org/10.7764/cdi.49.27817

Jost, P., Maurer, M., & Hassler, J. (2020). Populism Fuels Love and Anger: The Impact of Message Features on Users’ Reactions on Facebook. International Journal of Communication, 14(0), 22. https://ijoc.org/index.php/ijoc/article/view/13400

Kotsakis, R., Vrysis, L., Vryzas, N., Saridou, T., Matsiola, M., Veglis, A., & Dimoulas, C. (2023). A web framework for information aggregation and management of multilingual hate speech. Heliyon, 9(5), e16084. https://doi.org/10.1016/j.heliyon.2023.e16084

Kosterich, A., & Weber, M. S. (2019). Transformation of a Modern Newsroom Workforce. Journalism Practice, 13(4), 431–457. https://doi.org/10.1080/17512786.2018.1497454

Ksiazek, T. B. (2018). Commenting on the News. Journalism Studies, 19(5), 650–673. https://doi.org/10.1080/1461670X.2016.1209977

Lee, R. K.-W. (2023). Predicting hate intensity of twitter conversation threads. Knowledge Based Systems, 275, 110644. https://doi.org/10.1016/j.knosys.2023.110644

Lee, J., Lim, T., Lee, H., Jo, B., Kim, Y., Yoon, H., & Han, S. C. (2022, September 30). K-MHaS: A Multi-label Hate Speech Detection Dataset in Korean Online News Comment. arXiv. https://doi.org/10.48550/arXiv.2208.10684

Liang, H., & Ng, Y. M. M. (2023). The expression effects of uncivil disagreement: The mechanisms of cognitive dissonance and self-perception. Human Communication Research, 49(3), 251–259. https://doi.org/10.1093/hcr/hqac032

Mansur, Z., Omar, N., & Tiun, S. (2023). Twitter Hate Speech Detection: A Systematic Review of Methods, Taxonomy Analysis, Challenges, and Opportunities. IEEE Access, 11, 16226–16249. https://doi.org/10.1109/ACCESS.2023.3239375

Marques, T. (2023). The Expression of Hate in Hate Speech. Journal of Applied Philosophy, 40(5), 769–787. https://doi.org/10.1111/japp.12608

Masullo, G. M., Riedl, M. J., & Huang, Q. E. (2020). Engagement Moderation: What Journalists Should Say to Improve Online Discussions. Journalism Practice, 16(4), 738–754. https://doi.org/10.1080/17512786.2020.1808858

Mourão, R. R., & Brown, D. K. (2022). Black Lives Matter Coverage: How Protest News Frames and Attitudinal Change Affect Social Media Engagement. Digital Journalism, 10(4), 626–646. https://doi.org/10.1080/21670811.2021.1931900

Nascimento, F. R. S., Cavalcanti, G. D. C., & Da Costa-Abreu, M. (2023). Exploring Automatic Hate Speech Detection on Social Media: A Focus on Content-Based Analysis. SAGE Open, 13(2). https://doi.org/10.1177/21582440231181311

Oz, M., Zheng, P., & Masullo Chen, G. (2018). Twitter versus Facebook: Comparing incivility, impoliteness, and deliberative attributes. New Media & Society, 20(9), 3400–3419. https://doi.org/10.1177/1461444817749516

Paasch-Colberg, S., & Strippel, C. (2022). “The Boundaries are Blurry…”: How Comment Moderators in Germany See and Respond to Hate Comments. Journalism Studies, 23(2), 224–244. https://doi.org/10.1080/1461670X.2021.2017793

Paz-Rebollo, M. A., Cáceres-Zapatero, M. D., y Martín-Sánchez, I. (2021). Suscripción a la prensa digital como contención a los discursos de odio. Profesional de La Información, 30(6). https://doi.org/10.3145/EPI.2021.NOV.13

Pérez-Landa, G. I., Loyola-González, O., y Medina-Pérez, M. A. (2021). An Explainable Artificial Intelligence Model for Detecting Xenophobic Tweets. Applied Sciences, 11(22), 10801. https://doi.org/10.3390/app112210801

Perreault, G., Moon, R., Walsh, J., & Perreault, M. F. (2022). “It’s Not Hate but … ”: Marginal Categories in Rural Journalism. Journalism Practice, 0(0), 1–20. https://doi.org/10.1080/17512786.2022.2075782

Plaza-del-Arco, F. M., Molina-González, M. D., Ureña-López, L. A., y Martín-Valdivia, M. T. (2021). Comparing pre-trained language models for Spanish hate speech detection. Expert Systems with Applications, 166, 114120. https://doi.org/10.1016/j.eswa.2020.114120

Poletto, F., Basile, V., Sanguinetti, M., Bosco, C., & Patti, V. (2021). Resources and benchmark corpora for hate speech detection: A systematic review. Language Resources and Evaluation, 55(2), 477–523. https://doi.org/10.1007/s10579-020-09502-8

Prochazka, F., & Obermaier, M. (2022). Trust through Transparency? How Journalistic Reactions to Media-Critical User Comments Affect Quality Perceptions and Behavior Intentions. Digital Journalism, 10(3), 452–472. https://doi.org/10.1080/21670811.2021.2017316

Quandt, T. (2018). Dark Participation. Media and Communication, 6(4), 36–48. https://doi.org/10.17645/mac.v6i4.1519

Reguero-Sanz, I., Berdón-Prieto, P., y Herrero-Izquierdo, J. (2023). Journalism in Democracy: A Discourse Analysis of Twitter Posts on the Ferrerasgate Scandal. Media and Communication, 11(2), 176–187. https://doi.org/10.17645/mac.v11i2.6314

Reimer, J., Häring, M., Loosen, W., Maalej, W., & Merten, L. (2023). Content Analyses of User Comments in Journalism: A Systematic Literature Review Spanning Communication Studies and Computer Science. Digital Journalism, 11(7), 1328–1352. https://doi.org/10.1080/21670811.2021.1882868

Reimer, L. E., Schmitz, C. L., Janke, E. M., Askerov, A., Strahl, B. T., & Matyók, T. G. (2015). Transformative Change: An Introduction to Peace and Conflict Studies. Lexington Books. https://bit.ly/3A3zOz4

Rodríguez, A., Argueta, C., & Chen, Y-L. (2019). Automatic Detection of Hate Speech on Facebook Using Sentiment and Emotion Analysis. In 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 169–174). https://doi.org/10.1109/ICAIIC.2019.8669073

Ruiz-Iniesta, A., Blanco Valencia, X., Pérez Palau, D., De Gregorio Vicente, O., Cubillas-Mercado, J. J., Montero-Díaz, J., y Said-Hung, E. (2024). Informe final sobre el scrapeo de datos brutos obtenidos en medios informativos digitales españoles en X, FB y Web. https://doi.org/10.6084/m9.figshare.25187591

Sharipova, H. (2023). Algorithms of Oppression: How Search Engines Reinforce Racism. Leonardo, 56(1), 113–114. https://doi.org/10.1162/leon_r_02331

Statista. (2020). Ranking de las principales marcas de medios de comunicación online según el porcentaje de población que las usaba de forma semanal en España en 2020. Statista. https://bit.ly/3yyhuxo

Sellars, A. (2016, December 1). Defining Hate Speech. Berkman Klein Center Research Publication, (2016-20), 16-48. https://doi.org/10.2139/ssrn.2882244

Suau, J., Masip, P., & Ruiz, C. (2019). Missing the Big Wave: Citizens’ Discourses Against the Participatory Formats Adopted by News Media. Journalism Practice, 13(10), 1316–1332. https://doi.org/10.1080/17512786.2019.1591928

Suau-Jiménez, F., & Ivorra-Pérez, F. M. (2022). Reader Comments Agentive Power in COVID-19 Digital News Articles: Challenging Parascientific Information? Publications, 10(1), 2. https://doi.org/10.3390/publications10010002

Swart, J., Peters, C., & Broersma, M. (2019). Sharing and Discussing News in Private Social Media Groups. Digital Journalism, 7(2), 187–205. https://doi.org/10.1080/21670811.2018.1465351

Tellez, E., Moctezuma, D., Miranda, S., Graff, M., & Ruíz, G. (2023). Regionalized models for Spanish language variations based on Twitter. Language Resources and Evaluation, 57(4), 1697-1727. https://doi.org/10.1007/s10579-023-09640-9

Terren, L., y Borge-Bravo, R. (2021). Echo Chambers on Social Media: A Systematic Review of the Literature. Review of Communication Research, 9. https://rcommunicationr.org/index.php/rcr/article/view/16

Tontodimamma, A., Nissi, E., Sarra, A., & Fontanella, L. (2021). Thirty years of research into hate speech: Topics of interest and their evolution. Scientometrics, 126(1), 157–179. https://doi.org/10.1007/S11192-020-03737-6

Vázquez-Herrero, J., Negreira-Rey, M.-C., y López-García, X. (2023). Misinformation on Trial: Media Coverage of a Murder, Public Conversation and Fact-Checking. Journalism Practice, 1–23. https://doi.org/10.1080/17512786.2022.2164328

Wintterlin, F., Schatto-Eckrodt, T., Frischlich, L., Boberg, S., & Quandt, T. (2020). How to Cope with Dark Participation: Moderation Practices in German Newsrooms. Digital Journalism, 8(7), 904–924. https://doi.org/10.1080/21670811.2020.1797519

Wolfgang, J. D., McConnell, S., & Blackburn, H. (2020). Commenters as a Threat to Journalism? How Comment Moderators Perceive the Role of the Audience. Digital Journalism, 8(7), 925–944. https://doi.org/10.1080/21670811.2020.1802319

Publicado

01-07-2025

Cómo citar

Montero-Díaz, J., Said-Hung, E., & Moreno-Delgado, A. (2025). Valoración del odio en medios españoles: tipologías, intensidades y escenarios digitales. Revista Mediterránea De Comunicación, 16(2), e28666. https://doi.org/10.14198/MEDCOM.28666

Número

Sección

Miscelánea