Valoración del odio en medios españoles: tipologías, intensidades y escenarios digitales

Autores/as

DOI:

https://doi.org/10.14198/MEDCOM.28666

Palabras clave:

Detección, expresiones de odio, medios digitales, medios informativos, monitorieo, redes sociales

Resumen

Purpose. This study analyzes the perception of communication professionals, the social sector, and academia regarding the presence and dissemination of hate speech in Spanish digital news media, aiming to identify discrepancies between their perceptions and media reality. Methodology. An exploratory study was conducted using an online survey applied to a random sample of 199 media professionals, third-sector representatives, and academic researchers. These data were then compared with the analysis of 9,278,137 messages collected from Facebook, X, and the institutional web portals of five Spanish digital media outlets. Results and conclusions. The findings reveal significant divergences between the respondents' perceptions and the actual dissemination of hate speech, particularly concerning the platforms where hate is most prevalent. Xenophobic hate is prioritized over other typologies, while political hate is underestimated. Additionally, respondents tend to focus on extreme forms of hate speech, overlooking lower-intensity expressions that contribute to the normalization of incivility. Novelty. This study provides a replicable methodology to assess perceptions of hate speech in digital media and compare them with empirical data, contributing to the development of more effective monitoring strategies aligned with the realities of digital communication.

Financiación

Ministerio de Ciencia e Innovación (Agencia Estatal de Investigación), Universidad Internacional de La Rioja

Citas

Bonaut, J., Vicent-Ibáñez, M., & Paz-Rebollo, M. A. (2024). Sports Journalists and Readers: Journalism and User Incivility. Journalism Practice, 18(2), 356–373. https://doi.org/10.1080/17512786.2023.2222730

Brown, A. (2017). What is hate speech? Part 1: The Myth of Hate. Law and Philosophy, 36(4), 419–468. https://doi.org/10.1007/s10982-017-9297-1

Chadwick, A. (2017). The Hybrid Media System: Politics and Power. Oxford University Press. https://doi.org/10.1093/oso/9780190696726.001.0001

Chen, G., & Dang, J. (2022). Crowds’ malice behind the screen: The normative influences of online dehumanization on discrimination against foreigners. Group Processes & Intergroup Relations, 26(7), 1548-1564. https://doi.org/10.1177/13684302221127228

Collins, J. (2023). Mobilising Extremism in Times of Change: Analysing the UK’s Far-Right Online Content During the Pandemic. European Journal on Criminal Policy and Research, 1–23. https://doi.org/10.1007/s10610-023-09547-9

Davies, E., & Dulguerova, E. (2024). Evaluating the performance and influencing factors of three portable black carbon monitors for field measurement. Journal of Environmental Sciences-China, 139, 320–333. https://doi.org/10.1016/j.jes.2023.05.044

De la Peña Sarracén, G. L., & Rosso, P. (2023). Systematic keyword and bias analyses in hate speech detection. Information Processing & Management, 60(5), 103433. https://doi.org/10.1016/j.ipm.2023.103433

Digital News Report (2020). Se debilita la confianza en los medios, resisten las marcas periodísticas y emerge el periodismo local. Digital News Report. https://bit.ly/3Ke7ax1

Dordevic, J. P. (2020). The sociocognitive dimension of hate speech in readers’ comments on Serbian news websites. Discourse Context & Media, 33. https://doi.org/10.1016/j.dcm.2019.100366

Fetscherin, M. (2019). The five types of brand hate: How they affect consumer behavior. Journal of Business Research, 101, 116–127. https://doi.org/10.1016/j.jbusres.2019.04.017

Frenda, S., Ghanem, B., Montes-y-Gómez, M., & Rosso, P. (2019). Online Hate Speech against Women: Automatic Identification of Misogyny and Sexism on Twitter. Journal of Intelligent & Fuzzy Systems, 36(5), 4743–4752. https://doi.org/10.3233/JIFS-179023

Frías-Vázquez, M., & Seoane-Pérez, F. (2019). Hate Speech in Spain Against Aquarius Refugees 2018 in Twitter. In Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 906–910). Asociation for Computing Machinery. https://doi.org/10.1145/3362789.3362849

Gangurde, A., Mankar, P., Chaudhari, D., & Pawar, A. (2022). A Systematic Bibliometric Analysis of Hate Speech Detection on Social Media Sites. Journal of Scientometric, 11(1), 100–111. https://doi.org/10.5530/jscires.11.1.10

García-Baena, D., García-Cumbreras, M. A., Jiménez-Zafra, S. M., García-Díaz, J. A., & Valencia-García, R. (2023). Hope speech detection in Spanish. Language Resources and Evaluation, 57(4), 1487–1514. https://doi.org/10.1007/s10579-023-09638-3

Gómez-García, S., Paz-Rebollo, M. A., y Cabeza-San-Deogracias, J. (2021). Newsgames against hate speech in the refugee crisis. Comunicar: Revista Científica de Comunicación y Educación, 29(67), 123–133. https://doi.org/10.3916/C67-2021-10

Harahap, Y. S., & Siregar, N. (2022). A forensic linguistic approach to interpreting a hate speech case on social media. Vision, 18(1), 58–65. https://doi.org/10.30829/vis.v18i1.1414

Hille, S., & Bakker, P. (2014). Engaging the Social News User. Journalism Practice, 8(5), 563–572. https://doi.org/10.1080/17512786.2014.899758

Jiménez-Amores, J., Blanco-Herrero, D., Sánchez-Holgado, P., y Frías-Vázquez, M. (2021). Detectando el odio ideológico en Twitter. Desarrollo y evaluación de un detector de discurso de odio por ideología política en tuits en español. Cuadernos.Info, (49), 98–124. https://doi.org/10.7764/cdi.49.27817

Jost, P., Maurer, M., & Hassler, J. (2020). Populism Fuels Love and Anger: The Impact of Message Features on Users’ Reactions on Facebook. International Journal of Communication, 14(0), 22. https://ijoc.org/index.php/ijoc/article/view/13400

Kotsakis, R., Vrysis, L., Vryzas, N., Saridou, T., Matsiola, M., Veglis, A., & Dimoulas, C. (2023). A web framework for information aggregation and management of multilingual hate speech. Heliyon, 9(5), e16084. https://doi.org/10.1016/j.heliyon.2023.e16084

Kosterich, A., & Weber, M. S. (2019). Transformation of a Modern Newsroom Workforce. Journalism Practice, 13(4), 431–457. https://doi.org/10.1080/17512786.2018.1497454

Ksiazek, T. B. (2018). Commenting on the News. Journalism Studies, 19(5), 650–673. https://doi.org/10.1080/1461670X.2016.1209977

Lee, R. K.-W. (2023). Predicting hate intensity of twitter conversation threads. Knowledge Based Systems, 275, 110644. https://doi.org/10.1016/j.knosys.2023.110644

Lee, J., Lim, T., Lee, H., Jo, B., Kim, Y., Yoon, H., & Han, S. C. (2022, September 30). K-MHaS: A Multi-label Hate Speech Detection Dataset in Korean Online News Comment. arXiv. https://doi.org/10.48550/arXiv.2208.10684

Liang, H., & Ng, Y. M. M. (2023). The expression effects of uncivil disagreement: The mechanisms of cognitive dissonance and self-perception. Human Communication Research, 49(3), 251–259. https://doi.org/10.1093/hcr/hqac032

Mansur, Z., Omar, N., & Tiun, S. (2023). Twitter Hate Speech Detection: A Systematic Review of Methods, Taxonomy Analysis, Challenges, and Opportunities. IEEE Access, 11, 16226–16249. https://doi.org/10.1109/ACCESS.2023.3239375

Marques, T. (2023). The Expression of Hate in Hate Speech. Journal of Applied Philosophy, 40(5), 769–787. https://doi.org/10.1111/japp.12608

Masullo, G. M., Riedl, M. J., & Huang, Q. E. (2020). Engagement Moderation: What Journalists Should Say to Improve Online Discussions. Journalism Practice, 16(4), 738–754. https://doi.org/10.1080/17512786.2020.1808858

Mourão, R. R., & Brown, D. K. (2022). Black Lives Matter Coverage: How Protest News Frames and Attitudinal Change Affect Social Media Engagement. Digital Journalism, 10(4), 626–646. https://doi.org/10.1080/21670811.2021.1931900

Nascimento, F. R. S., Cavalcanti, G. D. C., & Da Costa-Abreu, M. (2023). Exploring Automatic Hate Speech Detection on Social Media: A Focus on Content-Based Analysis. SAGE Open, 13(2). https://doi.org/10.1177/21582440231181311

Oz, M., Zheng, P., & Masullo Chen, G. (2018). Twitter versus Facebook: Comparing incivility, impoliteness, and deliberative attributes. New Media & Society, 20(9), 3400–3419. https://doi.org/10.1177/1461444817749516

Paasch-Colberg, S., & Strippel, C. (2022). “The Boundaries are Blurry…”: How Comment Moderators in Germany See and Respond to Hate Comments. Journalism Studies, 23(2), 224–244. https://doi.org/10.1080/1461670X.2021.2017793

Paz-Rebollo, M. A., Cáceres-Zapatero, M. D., y Martín-Sánchez, I. (2021). Suscripción a la prensa digital como contención a los discursos de odio. Profesional de La Información, 30(6). https://doi.org/10.3145/EPI.2021.NOV.13

Pérez-Landa, G. I., Loyola-González, O., y Medina-Pérez, M. A. (2021). An Explainable Artificial Intelligence Model for Detecting Xenophobic Tweets. Applied Sciences, 11(22), 10801. https://doi.org/10.3390/app112210801

Perreault, G., Moon, R., Walsh, J., & Perreault, M. F. (2022). “It’s Not Hate but … ”: Marginal Categories in Rural Journalism. Journalism Practice, 0(0), 1–20. https://doi.org/10.1080/17512786.2022.2075782

Plaza-del-Arco, F. M., Molina-González, M. D., Ureña-López, L. A., y Martín-Valdivia, M. T. (2021). Comparing pre-trained language models for Spanish hate speech detection. Expert Systems with Applications, 166, 114120. https://doi.org/10.1016/j.eswa.2020.114120

Poletto, F., Basile, V., Sanguinetti, M., Bosco, C., & Patti, V. (2021). Resources and benchmark corpora for hate speech detection: A systematic review. Language Resources and Evaluation, 55(2), 477–523. https://doi.org/10.1007/s10579-020-09502-8

Prochazka, F., & Obermaier, M. (2022). Trust through Transparency? How Journalistic Reactions to Media-Critical User Comments Affect Quality Perceptions and Behavior Intentions. Digital Journalism, 10(3), 452–472. https://doi.org/10.1080/21670811.2021.2017316

Quandt, T. (2018). Dark Participation. Media and Communication, 6(4), 36–48. https://doi.org/10.17645/mac.v6i4.1519

Reguero-Sanz, I., Berdón-Prieto, P., y Herrero-Izquierdo, J. (2023). Journalism in Democracy: A Discourse Analysis of Twitter Posts on the Ferrerasgate Scandal. Media and Communication, 11(2), 176–187. https://doi.org/10.17645/mac.v11i2.6314

Reimer, J., Häring, M., Loosen, W., Maalej, W., & Merten, L. (2023). Content Analyses of User Comments in Journalism: A Systematic Literature Review Spanning Communication Studies and Computer Science. Digital Journalism, 11(7), 1328–1352. https://doi.org/10.1080/21670811.2021.1882868

Reimer, L. E., Schmitz, C. L., Janke, E. M., Askerov, A., Strahl, B. T., & Matyók, T. G. (2015). Transformative Change: An Introduction to Peace and Conflict Studies. Lexington Books. https://bit.ly/3A3zOz4

Rodríguez, A., Argueta, C., & Chen, Y-L. (2019). Automatic Detection of Hate Speech on Facebook Using Sentiment and Emotion Analysis. In 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 169–174). https://doi.org/10.1109/ICAIIC.2019.8669073

Ruiz-Iniesta, A., Blanco Valencia, X., Pérez Palau, D., De Gregorio Vicente, O., Cubillas-Mercado, J. J., Montero-Díaz, J., y Said-Hung, E. (2024). Informe final sobre el scrapeo de datos brutos obtenidos en medios informativos digitales españoles en X, FB y Web. https://doi.org/10.6084/m9.figshare.25187591

Sharipova, H. (2023). Algorithms of Oppression: How Search Engines Reinforce Racism. Leonardo, 56(1), 113–114. https://doi.org/10.1162/leon_r_02331

Statista. (2020). Ranking de las principales marcas de medios de comunicación online según el porcentaje de población que las usaba de forma semanal en España en 2020. Statista. https://bit.ly/3yyhuxo

Sellars, A. (2016, December 1). Defining Hate Speech. Berkman Klein Center Research Publication, (2016-20), 16-48. https://doi.org/10.2139/ssrn.2882244

Suau, J., Masip, P., & Ruiz, C. (2019). Missing the Big Wave: Citizens’ Discourses Against the Participatory Formats Adopted by News Media. Journalism Practice, 13(10), 1316–1332. https://doi.org/10.1080/17512786.2019.1591928

Suau-Jiménez, F., & Ivorra-Pérez, F. M. (2022). Reader Comments Agentive Power in COVID-19 Digital News Articles: Challenging Parascientific Information? Publications, 10(1), 2. https://doi.org/10.3390/publications10010002

Swart, J., Peters, C., & Broersma, M. (2019). Sharing and Discussing News in Private Social Media Groups. Digital Journalism, 7(2), 187–205. https://doi.org/10.1080/21670811.2018.1465351

Tellez, E., Moctezuma, D., Miranda, S., Graff, M., & Ruíz, G. (2023). Regionalized models for Spanish language variations based on Twitter. Language Resources and Evaluation, 57(4), 1697-1727. https://doi.org/10.1007/s10579-023-09640-9

Terren, L., y Borge-Bravo, R. (2021). Echo Chambers on Social Media: A Systematic Review of the Literature. Review of Communication Research, 9. https://rcommunicationr.org/index.php/rcr/article/view/16

Tontodimamma, A., Nissi, E., Sarra, A., & Fontanella, L. (2021). Thirty years of research into hate speech: Topics of interest and their evolution. Scientometrics, 126(1), 157–179. https://doi.org/10.1007/S11192-020-03737-6

Vázquez-Herrero, J., Negreira-Rey, M.-C., y López-García, X. (2023). Misinformation on Trial: Media Coverage of a Murder, Public Conversation and Fact-Checking. Journalism Practice, 1–23. https://doi.org/10.1080/17512786.2022.2164328

Wintterlin, F., Schatto-Eckrodt, T., Frischlich, L., Boberg, S., & Quandt, T. (2020). How to Cope with Dark Participation: Moderation Practices in German Newsrooms. Digital Journalism, 8(7), 904–924. https://doi.org/10.1080/21670811.2020.1797519

Wolfgang, J. D., McConnell, S., & Blackburn, H. (2020). Commenters as a Threat to Journalism? How Comment Moderators Perceive the Role of the Audience. Digital Journalism, 8(7), 925–944. https://doi.org/10.1080/21670811.2020.1802319

Estadísticas

Estadísticas en RUA

Publicado

17-04-2025

Cómo citar

Montero-Díaz, J., Said-Hung, E., & Moreno-Delgado, A. (2025). Valoración del odio en medios españoles: tipologías, intensidades y escenarios digitales. Revista Mediterránea De Comunicación. https://doi.org/10.14198/MEDCOM.28666